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A B S T R A C T
In today’s information age, eavesdropping has been one of the most serious privacy threats
information security, such as exodus spyware[1] and pegasus spyware[2]. And the main one of the
is acoustic eavesdropping. Acoustic eavesdropping[3] is a technology that uses microphones, senso
or other devices to collect and process sound signals and convert them into readable informatio
Although much research has been done in this area, there is still a lack of comprehensive investigati
into the timeliness of this technology, given the continuous advancement of technology and t
rapid development of eavesdropping methods. In this article, we have given a selective overview
acoustic eavesdropping, focusing on the methods of acoustic eavesdropping. More specifically, w
divide acoustic eavesdropping into three categories: motion sensor-based acoustic eavesdroppin
optical sensor-based acoustic eavesdropping, and RF-based acoustic eavesdropping. Within the
three representative frameworks, we review the results of acoustic eavesdropping according to t
type of equipment they use and the physical principles of each. Secondly, we also introduce seve
important but challenging applications of these acoustic eavesdropping methods. In addition, w
compared the systems that meet the requirements of acoustic eavesdropping in real-world scenari
from multiple perspectives, including whether they are non-intrusive, whether they can achie
unconstrained word eavesdropping, and whether they use machine learning, etc. The general templa
of our article is as follows: firstly, we systematically review and classify the existing eavesdroppi
technologies, elaborate on their working mechanisms, and give corresponding formulas. Then, the
eavesdropping methods were compared and analyzed, and each method’s effectiveness and technic
difficulty were evaluated from multiple dimensions. In addition to an assessment of the current sta
of the field, we discuss the current shortcomings and challenges and give a fruitful direction for t
future of acoustic eavesdropping research. We hope to continue to inspire researchers in this directio

Introduction
In recent years, eavesdropping has had a relatively large
urity problem on smart homes, smartphones, and other

vices. For example, the possibility of covert eavesdrop-
g with a smartphone microphone[4], the KeyListener
artphone side channel attacks [5] and Lamphone[6]. In-
estingly, most eavesdropping uses sound sensors to pick
the sound and then restore the sound and uses auditory
visual equipment to analyze and extract information,
ich can be specifically described as acoustic eavesdrop-
g problems. Specifically, acoustic eavesdropping[3] is
urveillance technique that obtains information by cap-
ing and analyzing sound or vibration[7]. This approach
n involve listening to conversations[8], machine runs[7],
yboard clicks[9], etc., to quietly obtain sensitive infor-
tion in the target environment without physical con-
t. Acoustic eavesdropping devices may include high-
sitivity microphones[10], sound amplifiers[11], vibra-

n sensors[12], etc., which can be hidden in a variety of
ces[7] to collect audio evidence or intelligence unde-
ted.
∗Corresponding author
ail address: phu@sdu.edu.cn(P.Hu).

ywchen@mail.sdu.edu.cn (Y. Chen); li_wenhao@mail.sdu.edu.cn (W.
; xzcheng@sdu.edu.cn (X. Cheng); phu@sdu.edu.cn (P. Hu)

ORCID(s):

Acoustic eavesdropping technology is essential for a
plications in the security sector[13]. Acoustic eavesdro
ping technology can be used to gather intelligence inform
tion to improve security and response capabilities. Acoust
eavesdropping technology also inspires and promotes sc
entific research and engineering applications. In the field
of acoustic signal processing, sensor networks[14], wir
less communications[12], etc., the application of acoust
eavesdropping technology has promoted the innovation an
development of related technologies and provided new ide
and methods for solving practical problems.

However, there is a lack of comprehensive investigatio
and analysis of the latest development and application
acoustic eavesdropping technology. Therefore, this artic
summarizes the current acoustic eavesdropping systems.

To a large extent, acoustic eavesdropping can be d
vided into the following categories: motion sensor-base
acoustic eavesdropping, optical sensor-based acoustic eave
dropping, and RF-based acoustic eavesdropping. These va
depending on the device they are using. In particular,
the first type, motion sensor-based acoustic eavesdroppin
utilizes motion sensors on smart devices to capture the tin
movements of the device due to sound wave vibrations[15
Motion sensors convert these vibrations into electrical si
nals that can be analyzed and reconstructed to identi
sound information[16]. It does not require direct conta
with the sound source and can be monitored remotely fro
a distance[17]. In the second, optical sensor-based acoust

Chen et al.: Preprint submitted to Elsevier Page 1 of 1
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A Survey of Acoustic Eavesdropping Attacks: Principle, Methods, and Progress

esdropping relies on optical devices to capture changes in
ht generated by vibrations on the surface of objects caused
sound waves[18]. This method allows for very precise
asurement of the small movements of the surface of an
ject[19]. It can be used for acoustic eavesdropping at a
ater distance[20]. In the third, RF-based acoustic eaves-
pping uses the reflective properties of radio waves to

tect and analyze the vibration of objects[21]. This method
n penetrate certain substances and is beneficial for acoustic
esdropping in non-line-of-sight situations[22]. For the

e of different acoustic eavesdropping, it is necessary to
ver multiple principles or theories such as the gyroscope
nciple, the acceleration principle, and the refraction and
ection theory of light, and for more detailed discussions,
ase refer to section 2.
Although there has been a lot of research in the field

acoustic eavesdropping, there is still a lack of compre-
nsive investigation into the timeliness of this technol-
y due to the continuous advancement of technology and

rapid development of eavesdropping methods. With the
id development of digital signal processing[23], artifi-
l intelligence[24], wireless communication[25], and other
lds, acoustic eavesdropping technology is also constantly
olving and updating.

In recent years, acoustic sensing technology has made
arkable progress in the fields of health monitoring[26],

vironmental monitoring[27], and smart home[28], which
vides new possibilities for the application of acoustic
esdropping technology[29]. [30] discusses the latest ad-

nces in acoustic emission technology and further demon-
ates the potential and application prospects of acoustic
hnology in the field of eavesdropping.
In this article, we selectively elaborate on the methods
acoustic eavesdropping. More specifically, we classify

oustic eavesdropping into three categories based on the
erent devices used: motion sensor-based acoustic eaves-
pping, optical sensor-based acoustic eavesdropping, and
-based acoustic eavesdropping.
Motion sensor-based acoustic eavesdropping[31] ex-
its the sensitivity of motion sensors to sound-induced vi-
tions to capture sound signals. Acoustic eavesdropping of

man voices is possible due to the partial overlap between
fundamental frequency of human speech and the sam-

ng frequency of the sensor. Research on this attack began
2014, and a variety of identification and reconstruction
tems based on deep learning have been proposed. Acous-
eavesdropping based on optical sensors[32] is an attack
thod that uses lasers or other light sources to measure
y vibrations on a target surface and restore sound signals.
is attack exploits the high sensitivity of optical sensors to
ht signals and the nonlinear relationship between sound
d light signals. Research on this attack began in the
40s, and a variety of optical acoustic sensors based on
EMS[33], fiber optics[34], or micro-resonant cavities[35]
ve been proposed. RF-based acoustic eavesdropping[36]
a method that uses radio waves to measure tiny vibrations
the target surface and restore them. Sound signal attack

method. This attack exploits the sensitivity of radio waves
changes in the electromagnetic field caused by sound, as we
as the modulation and demodulation relationship betwee
sound and radio waves. Research on this attack began
the 1960s[37]. At present, a variety of RF sound senso
based on ultrasonic[38], radar[39], or WiFi[19] have bee
proposed.

We discuss each of the three types of acoustic eavesdro
ping attacks. The representative eavesdropping methods a
explained and the relevant formulas are given. We also com
pare three types of acoustic eavesdropping attack methods

We compared them in terms of whether they were no
invasive, whether they could achieve unconstrained voca
ulary, whether they could pass through opaque insulator
whether they needed ML help, whether they could dete
mobile audio sources, whether they achieved high accurac
and whether they could achieve low energy consumptio
Each of these seven areas is briefly described below.

Research into non-intrusive techniques[40] allows f
concealment, which in turn allows for covert acoustic eave
dropping. Non-intrusive techniques are usually more flex
ble and easily adapted to different acoustic eavesdroppin
needs[41]. Unconstrained vocabulary[42] means that th
acoustic eavesdropping system needs to be able to unde
stand and process any vocabulary without being constraine
by presuppositions. This helps to understand more comple
contexts and extract information broadly. Acoustic eave
dropping through an opaque insulator[10] allows sound to b
captured without entering the target space, which increas
the concealment of the action and the breadth of the soun
signal collection. Unaided by ML[43] means that we don
need a lot of training data to train the model, which
good for acoustic eavesdropping in situations where data
difficult to obtain or where privacy is extremely demandin
In addition, the speed of sound signal processing can b
increased without relying on complex machine learnin
models and large computing resources, making real-tim
monitoring and analysis possible. The ability of acoust
eavesdropping to listen to mobile audio sources[43] e
pands the range of applications for acoustic taps, allowin
surveillance to be no longer limited to specific static loc
tions, but to cover a wider area and different environment
conditions[44]. A high accuracy rate[3] can improve th
overall performance of an acoustic eavesdropping syste
by reducing false alarms (incorrectly identifying non-targ
sounds as target sounds) and missed alarms (failing to dete
target sounds that are present)[45]. It can also improve th
quality of the collected acoustic signals. The realization
low energy consumptionc[46] can extend the life of th
equipment, reduce costs, and facilitate the widespread u
of acoustic eavesdropping methods.

For all articles that meet the requirements of acoust
eavesdropping in real-world scenarios, we have table 1
compare their eavesdropping methods.

Finally, we discuss the shortcomings and challenges
current research and provide possible future directions.

Chen et al.: Preprint submitted to Elsevier Page 2 of 1
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A Survey of Acoustic Eavesdropping Attacks: Principle, Methods, and Progress

Sensor Type Acoustic
Eavesdropping Attack

Competence

Non-Invasive
Unconstrained
Vocabulary

Through
Opaque Insulator Unaided by ML

Mobile
Audio Source High accuracy Low energy

consumption

Motion Sensor

AccelWord[47] % % % % ! ! !

PitchIn[48] % ! % ! - - -
AccelEve[49] % % % % - ! !

AccEar[42] % ! % % - ! !

Speechless[50] % % % % - - -
Gyrophone[51] % % % % - % -

HDD [52] % ! - ! - - -
VibraPhone[49] % ! % % - ! -
V-Speech[53] % ! % ! - ! !

Optical Sensor
Visual Microphone[54] ! ! % ! - - -

LidarPhone[55] % ! % % - ! -
Lamphone[6] ! ! % ! - ! -

Radio Receiver

WiHear[56] ! % ! % % ! -
ART[10] ! % ! ! - ! -

Tag-Bug[57] % ! ! % - ! !

UWHear[58] ! - ! ! % - -
WaveEar[59] ! ! - % % ! !

MILLIEAR[60] ! ! ! % % ! -
mmSpy[61] ! % - % % ! -
mmEcho[43] ! ! ! ! ! ! -

ble 1
mparison of acoustic eavesdropping attacks in the literature

The survey is presented as follows: First, we classify
d summarize three types of acoustic eavesdropping and
strate them with examples in section 2. Then we dis-

ss the advantages and disadvantages of different acoustic
esdropping attacks in section 3. Finally, section 4 and
tion 5 give future research directions. and summary.

Acoustic Eavesdropping Method
Acoustic eavesdropping is secretly or quietly listening

other people’s private conversations without their per-
ssion to get information. Acoustic eavesdropping is a
sic security and privacy threat in wireless networks, which
n lead to the leakage of sensitive information, identity
personation, data tampering, or other malicious behavior.
oustic eavesdropping can be used in the military to obtain
strategies and plans of enemies or competitors. It can be

ed in business and finance to steal trade secrets, customer
ta, or market dynamics. It can be used for scientific and
hnical analysis and detection of signal features. Ans it

n be used by individuals to obtain other people’s private
ormation, etc.
To improve privacy protection capabilities, we summa-

ed existing acoustic eavesdropping methods. This sec-
n reviews existing acoustic eavesdropping methods and
ides them into the following three categories based on
erent acoustic eavesdropping methods.
. Motion Sensor-based acoustic eavesdropping
Motion Sensor-based acoustic eavesdropping [62] is a

hnology that uses motion sensors (such as accelerometers,
roscopes, etc.) on smartphones or other devices to capture
d analyze surrounding sound signals. This technology can
pass the permission restrictions on the microphone [63],
reby achieving privacy eavesdropping on the user. The

basic principle of motion sensing-based acoustic eavesdro
ping is that when sound waves propagate in the air, the
cause tiny vibrations in objects, which can be detected b
motion sensors and converted into electrical signals. B
performing signal processing and machine learning on the
electrical signals, the spectral characteristics of the soun
waves can be restored, thereby identifying the speaker
information and even parsing the speech content.

In the existing research, acoustic eavesdropping based o
motion sensors can be divided into the following aspects.
2.1.1. Base on MEMS Gyroscopes

A standard-size(non-MEMS) gyroscope [64] general
consists of a rotor, an axis of rotation, and a gimbal c
ordinate system (inner and outer rings). When the rot
rotates at high speed, if no external moment acts on th
gyroscope, the spindle of the rotor remains axially fixe
i.e. pointing in a fixed direction. If an external mome
acts on the gyroscope, the spindle of the rotor rotates, i.e
around an axis perpendicular to the external moment. B
measuring the direction of the rotor’s axis of rotation and th
angular velocity of the precession, the angular velocity an
direction of the carrier can be obtained. However, acoust
eavesdropping uses a MEMS gyroscope [65]. All MEM
gyroscopes work with another physical phenomenon – th
Coriolis force [66], which is a fictitious force (D’Alembe
force) observed in a rotating frame of reference, which
oriented perpendicular to the axis of rotation of the frame
reference and the velocity of the object.

The formula for calculating the Coriolis force is

𝐹𝑐𝑜𝑟 = 2𝑚𝑣 × 𝜔 (

Chen et al.: Preprint submitted to Elsevier Page 3 of 1
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A Survey of Acoustic Eavesdropping Attacks: Principle, Methods, and Progress

ere 𝑚 and 𝑣 represent the mass and velocity of the object,
pectively, and 𝜔 denotes the angular rate of the reference
me.
In general, the structure of a MEMS gyroscope consists
a vibrating detection mass and a fixed driving mass,

d the MEMS gyroscope measures its angular rate (𝜔) by
sing the amount of Coriolis force acting on the moving

tection mass within the gyroscope. When the gyroscope
ates around an axis perpendicular to the direction of
ration, the detected mass is subjected to the Coriolis
ce, which produces a secondary vibration perpendicu-
to the direction of vibration, and the Coriolis force is
sed by measuring the vibration it produces. Its vibra-

nal frequency is also known as the gyroscope’s resonant
quency[67].
Specifically, a MEMS gyroscope is used as a micro-

one for speech recognition and analysis in [51]. First,
authors extracted the features measured by the MEMS

roscope, such as digital pronunciation and other informa-
n, and preprocessed the data. Then, they trained machine
rning algorithms to identify specific speakers or number
nunciations. In this way, they could recognize and leak
sitive information such as numbers spoken near or above
phone, and achieve speaker (including speaker gender)

ntification and isolated word recognition, showing the
tential eavesdropping risk of MEMS gyroscopes.
.2. Based on Accelerometer
An accelerometer[68] is an inertial sensor that is ca-

ble of measuring the acceleration force of an object.
e acceleration force is the force that acts on an object
ring its acceleration, such as the earth’s gravitational pull,
ich is also known as gravity. The acceleration force can
a constant, such as 𝑔, or a variable. Accelerometers

nerally consist of a body, a spring, and an inertial body.
celerometers use inertial forces and capacitance changes
detect acceleration. When the body of the accelerometer
accelerated, the inertial body will move relative to the
dy due to inertia, resulting in a change in the shape and
gth of the spring, and the capacitance between the body

d the inertial body will change with distance. In this way,
measuring the change in capacitance, the magnitude and
ection of the acceleration can be calculated.
The accelerometer sensors currently used in smart-

ones and other smart devices, such as smartwatches
d smart glasses, are Micro-Electro-Mechanical Systems
EMS)[69]. MEMS technology enables MEMS accelerom-
rs to be small, light, and energy-efficient. This type
MEMS accelerometer is a device that captures the ac-

leration of its body along three sensing axes, each of
ich is typically handled by a sensing unit with three
in components: inertial mass, spring legs, and stationary
gers[70]. When acceleration is applied, the inertial mass
ifts in the opposite direction, resulting in a change in
pacitance between the stationary fingers. This change
duces an analog signal, which is then mapped to an

celeration measurement.

Specifically, in [71] the authors discussed a method
performing a side-channel attack on smartphone speake
using the smartphone’s accelerometer. They propose A
celEve, a learning-based smartphone eavesdropping attac
that can identify and reconstruct speech signals emitted b
smartphone speakers, and demonstrate its ability to ide
tify sensitive words in calls, as well as how to link th
information to specific callers by cross-identifying sensitiv
words across multiple phone calls. [47]discusses how
identify some of the user’s private information through th
smartphone’s accelerometer, and proposes a solution name
AccelWord to address the energy consumption problem
voice control. The authors point out that if the attacker ca
adjust the sampling frequency of the accelerometer, they ca
even use the accelerometer readings to reconstruct part of th
human speech, increasing the risk to user privacy.

The above are all eavesdropping studies that only targ
human speech. [50] focuses on the impact of machin
generated speech and actual human speech on smartphon
motion sensors, as well as the potential privacy leakage risk
[42] performs eavesdropping attacks through acceleromet
signals, which can reconstruct any audio signals played b
smartphone speakers, and the vocabulary is unrestricted.
2.1.3. Other methods

Besides the above methods of eavesdropping using gyr
scopes and accelerometers, there are also the following typ
of motion-sensing acoustic eavesdropping: [48] eavesdrop
on sounds in a room by reconstructing intelligible speec
signals from data fused from non-acoustic sensors (e.g. sei
mometers, gyroscopes, accelerometers). [52] explores th
possibility of extracting and parsing human speech using th
mechanical components in disk drives as miniature micr
phones, and demonstrates a method of eavesdropping usin
the mechanical objects in hard disk drives. [49] discuss
the possibility of extracting and parsing human speech usin
the sound sensor with minimal hardware changes by tran
forming the vibration motor into a sound sensor using th
back electromotive force generated by the ambient sound
the smartphone’s vibration motor, and designs techniques
decode human speech from noisy, low-bandwidth signal
indicating that the vibration motor can be used to liste
to human speech under certain conditions. [53] eavesdrop
on audio using the vibration sensor in the glasses no
pad. [72] achieves eavesdropping by converting the speake
connected to the computer into microphones.
2.2. Optical sensor-based acoustic eavesdropping

Optical sensor-based acoustic eavesdropping is a secr
technique that uses optical sensors[73] such as photodiode
photomultiplier tubes, phototransistors, etc. to capture th
vibration signals of the target object and restore the soun
content from them. The principle of this technique is th
sound is a vibration[74], which causes tiny deformations o
the surface of the object, thereby changing the reflection
transmission of light from the object. By measuring the
changes in light intensity, the vibration signal of the obje
can be obtained, and then the sound content can be restore

Chen et al.: Preprint submitted to Elsevier Page 4 of 1
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signal processing and machine learning[75]. There are
eral types of acoustic eavesdropping based on optical
sors.
.1. Based on Cameras
The principle of acoustic eavesdropping using a camera

to use the optical sensor of the camera to capture the
ration signal of the target object and restore the sound

ntent from it. This is a secret technique. [54] used a
h-speed camera for acoustic eavesdropping. A high-speed

mera[76] is a device that can capture motion images at an
posure of less than 1/1000 second or a frame rate of more
n 250 frames per second. Its working principle is to use
optical sensor to convert the light signal into an electric

nal, and then process and store the signal, and finally
yback or display it in slow motion. The article introduces
ovel visual microphone technology, which uses a high-

eed camera to capture the vibration mode of the object
der the action of sound waves, and restores the sound
nal by processing the recorded video with an algorithm.
Specifically, the technology is based on the movement of

jects caused by sound waves, using high-speed cameras to
ord the movement patterns of objects, and then process-
the video through algorithms to restore the sound signal.
Firstly, the input video is decomposed into spatial sub-

nds with different directions and scales, and the local
tion signals of each pixel, direction, and scale are cal-

lated to obtain the local motion information of objects
different directions and scales. The specific calculation
as follows: Phase variations are used in the complex
erable pyramid[77] representation of video 𝑉 to calculate
al motion. Decompose each frame of video 𝑉 (𝑥, 𝑦, 𝑡) into

mplex sub-bands corresponding to different scales and
entations. Every scale 𝑟 and direction 𝜃 can be described
a complex image, which can be expressed in terms of
plitude 𝐴 and phase 𝜙 as

𝐴(𝑟, 𝜃, 𝑥, 𝑦, 𝑡)𝑒𝑖𝜑(𝑟,𝜃,𝑥,𝑦,𝑡). (2)
By subtracting the local phase 𝜙 derived from this equa-

n from the local phase of the reference frame 𝑡0 (the
st frame of the video in most cases), the phase change is
lculated.

𝜑𝑣(𝑟, 𝜃, 𝑥, 𝑦, 𝑡) = 𝜑(𝑟, 𝜃, 𝑥, 𝑦, 𝑡) − 𝜑(𝑟, 𝜃, 𝑥, 𝑦, 𝑡0). (3)
r small motions, the alterations in phase are roughly in
e with the displacement of the image structure across the
ociated direction and scale.
Then, by combining local motion signals, aligning indi-
ual motion signals 𝜑(𝑟, 𝜃1, 𝑡), and performing weighted

eraging, where 𝑟 is the radial coordinate,𝜃 is the angular
ordinate, and 𝑡 is the time. The aligned signals are given
𝜙(𝑟𝑖, 𝜃𝑖, 𝑡 − 𝑡𝑖) , such that:

𝑡𝑖 = argmax
𝑡𝑖

𝜙0(𝑟0, 𝜃0, 𝑡)𝑇𝜙𝑖(𝑟𝑖, 𝜃𝑖, 𝑡 − 𝑡𝑖) (4)

Object

Timing Unit

Control Unit

Pulse Drive 

Circuitry

Echo Signal 

Processing Circuitry

laser

Optoelectronic 

devices

Light Emitter

Emission Optical Path

Receiving Optical Path

Figure 1: General process of acoustic eavesdropping based o
optical sensors. The laser emitter emits a laser beam th
irradiates the target object along the emitting optical pat
The target object reflects the laser light and the laser returns
the system along the receiving optical path. The optoelectron
device on the receiving optical path receives the reflected las
signal. The echo signal processing circuit analyzes the receive
signal and calculates the distance between the target obje
and the system.

The weight of each local signal is measured by its (square
amplitude:

𝜙𝑖(𝑟, 𝜃, 𝑡) =
∑
𝑥,𝑦

𝐴(𝑟, 𝜃, 𝑥, 𝑦)2𝜑𝑣(𝑟, 𝜃, 𝑥, 𝑦, 𝑡). (

Then the global motion signal is
𝑠̂(𝑡) =

∑
𝑖
𝜙𝑖(𝑟𝑖, 𝜃𝑖, 𝑡 − 𝑡𝑖) (

In this way, the overall movement pattern of the object
obtained, and the sound signal is finally restored.
2.2.2. Based on Laser Sensors

Lidar Sensor[78] is a technology that uses a laser bea
to scan the surrounding environment and generate a distanc
map. It can be used in a variety of applications such as remo
sensing, autonomous vehicles, meteorology, astronomy, et

Lidar Ranging
Lidar sensors are typically used to measure distance an

detect targets. The ranging principle is shown in the figu
1. Specifically, there are several ways to measure the rang
by lidar[79].

Time-of-Flight(ToF). Time-of-Flight[80] is a metho
of measuring distance. Lidar emits a short pulse of las
light and records the elapsed time from the time the bea
is transmitted to the time it is received. Since the speed
light is known, the distance between the target object an
the lidar can be calculated by measuring the time of flig
of the light. It is commonly used in applications that requi
fast and accurate distance measurement, such as autonomou
driving[81] and intelligent transportation[82].

The formula for ToF ranging[83] is
𝐷 = 𝑐 ∗ Δ𝑡

2
(

Chen et al.: Preprint submitted to Elsevier Page 5 of 1
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ere𝐷 is the distance of the measured object, 𝑐 is the speed
light, and Δ𝑡 is the time of flight of the laser.
Pulse Lidar. This method[84] is similar to the TOF, but
difference is that the lidar emits a series of short pulses

laser light and records the launch and return time of each
lse. By comparing the transmitting time and return time of
ch pulse, it is possible to calculate the distance to the target
ject. It is often used in long-distance and high-precision
ging scenarios, such as geological exploration[85], envi-
mental monitoring[86], spatial mapping[87], etc.
Assuming that the number of count pulses when the echo

lse arrives is 𝑛 and the repetition period of the count pulse
𝑇 , then the delay time of the echo pulse relative to the
nsmitted pulse is

Δ𝑡 = 𝑛 ∗ 𝑇 (8)
en the distance is

𝐷 = 𝑐 ∗ Δ𝑡
2

= 𝑐 ∗ 𝑛𝑇
2

(9)

Frequency-Modulated Continuous-Wave(FMCW). It
es a continuous laser beam and applies modulation at
frequency[88]. By measuring the frequency difference

tween the emitted frequency and the returned frequency,
distance between the target object and the lidar can

calculated. It is widely used in the automotive field,
ustrial-ranging applications, etc.
The following is a discussion of the case where the

ative velocity 𝑣𝑟 is 0. Assuming that the distance from
detected target to the lidar is 𝑅, the delay of the received

nal of the lidar receiver is 𝜏, and the speed of light is 𝑐, the
ationship between the detection range 𝑅 and the delay 𝜏
d the speed of light 𝑐 is as follows when the target velocity
ignored

𝑅 = 𝜏 ∗ 𝑐
2

(10)
𝑡𝑐 is half of the swept period. 𝑓𝑐 is the swept bandwidth.

d 𝑡𝑎𝑢 is the time from transmission to acceptance. Let
(𝑡) and 𝑓𝑒(𝑡) be the frequency change functions of the
t and received signals, respectively, and assume that the

ative velocity 𝑣𝑟 is 0, then the rising edge of the signal has
following relationship:

𝑓𝑆 (𝑡) = 𝑓0 +
𝑓𝑐
𝑡𝑐

∗ 𝑡

𝑓𝐸 = 𝑓𝑆 (𝑡 − 𝜏)
(11)

And there is a beat frequency function:
𝑓𝑏(𝑡) = 𝑓𝑆 (𝑡) − 𝑓𝐸(𝑡) (12)

And because 𝑅 = 𝜏∗𝑐
2 , from the geometric relation

= 𝑓𝑐
𝑡𝐶

, we can deduce:

𝑅 = 𝑐
2
∗

𝑡𝑐
𝑓𝑐

∗ 𝑓𝑏 (13)

From the above formula 13, 𝑅 is proportional to 𝑓𝑏.the emitted signal is a cosine wave, the variation of its tim
domain is as follows:

𝑢𝑆 (𝑡) = 𝑢̂𝑆 ∗ cos[2𝜋 ∗ 𝑓𝑆 (𝑡) ∗ 𝑡 + 𝜑𝑆 ] (1
The change of the received signal in the time domain is
𝑢𝐸(𝑡) = 𝑢̂𝐸 ∗ cos[2𝜋 ∗ 𝑓𝐸(𝑡) ∗ 𝑡 + 𝜑𝐸] (1

Bring in 𝑓𝑒 to get:
𝑢𝐸(𝑡) = 𝑢̂𝐸 ∗ cos[2𝜋 ∗ 𝑓𝑆 (𝑡) ∗ 𝑡−2𝜋 ∗ 𝑓𝑏(𝑡) ∗ 𝑡+𝜑𝐸] (1

Phase-Based Lidar. This method[89] calculates the di
tance by measuring the phase difference between the emitte
laser beam and the returned beam. The change in pha
difference is associated with the distance of the target objec
It is suitable for medium and close-range measurement
such as industrial measurements and medical applications

Specifically, it is to modulate the intensity of the lig
wave emitted. The measured distance can be expressed as

𝐷 = 𝑐 ∗ Δ𝜙
2𝑓

(1

where𝐷 is the distance of the measured object, 𝑐 is the spee
of light, Δ𝜙 is the phase difference of the laser, and 𝑓 is th
modulation frequency of the laser.

Triangulation. It uses the geometric relationship b
tween the angle of incidence and the angle of reflection
the laser to calculate the distance. It is suitable for low-co
sensors, such as those found in robotic cleaners.

Specifically, the laser emitted by the laser is incident
a certain angle with the normal of the object surface to th
surface of the measured object, and the back(scattered) lig
is converged and imaged through the lens at one point B
and finally collected by the photosensitive unit. We suppo
the angle between the incident light AO and the baseline A
is 𝛼. 𝐴𝐵 is the distance between the center of the laser an
the center of the CCD. BF is the focal length 𝑓 of the len
D is the limit position of the reflected light imaging on th
photosensitive unit when the measured object is far from th
infinity of the baseline. DE is the displacement of the sp
from the limit position on the photosensitive unit, denote
as 𝑥.When the optical path of the system is determined, th
𝛼, 𝐴𝐵, and 𝑓 are all known parameters. From this, we kno
that

𝐴𝑂 = 𝐴𝐵 ∗ 𝐹
𝑥 ∗ 𝛼

(1
When the relative displacement of the measured object an
the baseline AB occurs, 𝑥 changes to 𝑥′, and the distanc
of the measured object 𝑦 can be obtained from the abov
conditions that

𝑦 = 𝐴𝐵 ∗ 𝑓 ∗ (𝑥 − 𝑥′)
𝑥𝑥′

(1

Lidar-based Eavesdropping

Chen et al.: Preprint submitted to Elsevier Page 6 of 1
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A Survey of Acoustic Eavesdropping Attacks: Principle, Methods, and Progress

Above, we have explained the method of using lidar for
ging. Because lasers can be used for fine-grained dis-
ce measurements, and the propagation of sound through
edium in the form of mechanical waves causes small

ysical vibrations of nearby objects, we can take advantage
this feature for remote audio eavesdropping. A laser

crophone was designed in [90]. A laser microphone shines
aser beam on an object close to the place of origin and
asures the vibrations caused by the sound to restore the

dio. Laser microphones must be manually applied to their
nsmitters and receivers to obtain the required information
ough specular reflection. In [55], LidarPhone uses the
use reflection of the robot vacuum cleaner for eavesdrop-
g. It uses triangulation to capture tiny vibrations. The
nal-to-noise ratio of the final input signal is improved by
processing, followed by training and prediction. Super-
ed learning techniques were used to extract relevant fea-
es for classification. Deep learning techniques, especially
nvolutional neural networks, are used to extract privacy-
sitive information. Acoustic eavesdropping was finally
ieved.
.3. Based on Remote Electro-optical Sensor
In addition to the above-mentioned methods using high-

eed cameras and lidar, some methods use remote photo-
ctric sensors[6] to analyze the vibrations caused by the

und of the bulb to reconstruct the audio. Lamphone uses
hanging light bulb as an information leakage channel and

alyzes the light signal reflected by the vibration of the light
lb to steal the sound in the room. The principle is shown
the figure 2. It can improve the sensitivity of the system
increasing the internal gain of the sensor to optimize the
nal-to-noise ratio of optical measurements.

Algorithm

EavesdropperVictim

ure 2: Lamphone’s threat model. The sound creates fluc-
tions on the surface of the hanging bulb. Lamphone uses a
ote electro-optical sensor to analyze the frequency response

the hanging bulb to the sound, and the algorithm processes
o obtain the recovered acoustic signal.

. RF-based acoustic eavesdropping
A radio frequency signal[91] is a high-frequency al-

nating electromagnetic wave that can travel through the
and be reflected by the ionosphere at the outer edge

of the atmosphere to form a long-distance transmissio
capability. The frequency range of RF signals is general
between 300kHz and 300GHz. It is widely used in radar an
wireless communication. RF-based eavesdropping attack
are an attack method that uses radio frequency signals
listen to other people’s communications or obtain sensitiv
information. The principle is to use a special wireless r
ceiving device to intercept the radio frequency signal sent b
the target device, and then convert the signal into readab
data through a decoder, from which to extract sensitiv
information such as telephone call content, email, and te
messages. The Great Seal Bug [92] was one of the fir
acoustic eavesdropping devices to use passive RF techno
ogy to transmit audio signals. The eavesdropping device
a silver-plated copper cylinder consisting of a central tunin
column and a coupling disc inside the cylinder. The Gre
Seal Bug is eavesdropping on amplitude modulation signa
triggered by tuning, coupling modes, and vibrations of th
diaphragm.

There are different types and ways of eavesdroppin
based on RF technology, and we have summarized them.
2.3.1. Based on WiFi

[10] and [56] can identify specific words by analyzin
WiFi Received Signal Strength (RSS) and Channel Sta
Information (CSI), respectively.

[10] proposed a new acoustic eavesdropping metho
ART. It uses a reflected or emitted wireless signal to pe
etrate a conventional soundproof device, stealing subtle v
brations from the target device and converting it into a
audio signal. The authors used wireless vibrometry for r
mote sound capture or recovery. Because audio emission
cause tiny vibrations in the speaker itself, they can resona
with radio waves reflected from the speaker or a wirele
transmitter located in the same location as the speaker. S
contaminated radio waves can be captured and processed b
a tampered receiver to restore the original audio played b
the speaker. After the audio is collected, the required audio
obtained through the audio RF conversion and demodulatio
of the converted audio.

Specifically, the effect of vibration on radio RSS in aud
RF conversion can be expressed by the following formula

𝑅𝑆𝑆𝐿 = 𝜎[𝐴2(𝑑0)+2𝐴(𝑑0)𝐴′(𝑑0𝑑+⋯+𝑜(𝑑0)𝑑𝑘] (2
where 𝑑 = 𝑑 ∗ 𝑐𝑜𝑠𝛽 and 𝛽 is the angle between th

direction of vibration and the direction of reflection. 𝜎
the reflectivity (reflection gain) of the speaker surface (0
𝜎 < 1). 𝑑0 indicates the distance between the antenna an
the speaker. 𝐴(⋅) is the channel gain function. The square
operation on𝐴(⋅)models signal attenuation due to round-tr
propagation.

The effect of vibration on the radio phase can be e
pressed by the following formula:

𝑃ℎ𝑎𝑠𝑒𝐿 =
2𝜋(𝑑0 + 2𝑑)

𝜆0
+ 𝛾 (2

Chen et al.: Preprint submitted to Elsevier Page 7 of 1
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ere the 4𝜋𝑑
𝜆0

term contains the audio frequencies from the
eaker. 𝛾 is the initial phase of the reflection path. This
mula relates the phase of a radio signal to a vibration-
uced displacement, which changes the length of the path
signal travels, thus changing its phase.
Audio signals are obtained by reverse demodulation by

pturing audio-modulated radio samples, splitting samples,
nal processing, controlling ranges using bandpass filters,
d so on

[56] introduces a system called WiHear. The frame is
own in figure 3. WiHear doesn’t need to deploy any
vices and uses Wi-Fi signals to eavesdrop on people’s
nversations. It does this by detecting and analyzing tiny
iant reflexes from mouth movements. WiHear utilizes

IMO beamforming technology to locate and focus the
uth while hearing multiple conversations. It utilizes CSI

hannel State Information) for partial multipath removal of
mmercial OFDM-based Wi-Fi devices. Partial multipath

oval and discrete wavelet packet transform were used
construct the mouth motion profile. Leverage machine
rning to recognize pronunciations and translate them
ough classification and context-based error correction.
iHear enables the monitoring and recognition of human
eech behavior.

Laptop

People

AP

MIMO 

Beamforming

Filtering

Partial

Multipath

Removal

Wavelet

Transform

Vowels and 

Consonants

Remove 

Noise

Profile Building

Segmentation

Feature 

Extraction

Classification & 

Error 

Correction

Mouth Motion Profiling
Learning-based 

Lip Reading

ure 3: Frame diagram of WiHear. It consists of a transmitter
d a receiver for single-user lip reading. The transmitter uses
amforming to send a Wi-Fi signal to the user’s mouth.
e receiver extracts and analyzes the reflexes of mouth
vements. Then it explains the mouth movement in two
ps. On the left is the mouth movement analysis using
ering, partial multipath removal, and wavelet transform to
rify the signal and decompose the moh movement profile.

the right is learning-based lip reading, which applies
chine learning to recognize pronunciations and translate
m through classification and context-based error correction.

.2. Based on Ultra-Wide Band
Ultra-wide Band (UWB)[93] is a wireless communica-

n technology that enables short-range, high-bandwidth
mmunications using very low energy levels over a large
io spectrum. UWB transmits information by emitting

ort pulses over a large bandwidth (>500 MHz), enabling

pulse position or time modulation. Information can als
be modulated on UWB signals (pulses) by encoding th
polarity and amplitude of the pulses or by using quadratu
pulses. UWB pulses can be sent intermittently at relative
low pulse rates to support time or position modulation,
they can be sent at rates up to the reciprocal of the UW
pulse bandwidth.

UWB wireless systems[94] can be used to measure th
"time of flight" of transmissions at different frequencie
which helps to overcome multipath propagation, as some fr
quencies have direct paths, while others have longer delay
Using cooperatively symmetrical bidirectional metrolog
technology, distances can be measured with high resolutio
and high accuracy. In addition, UWB devices can also dete
mine whether an object is stationary, near, or far away

Acoustic eavesdropping based on Ultra-Wide Band[9
utilizes ultra-wideband technology to transmit audio signal
It collects and converts the sound signal into a digital signa
and then uses UWB to transmit it to the receiver and decod
it to restore the original sound signal. It utilizes the hig
frequency band utilization and high-speed data transmi
sion capabilities provided by UWB technology, enabling th
eavesdropping device to transmit sound signals in a wid
frequency band, and having a certain degree of concealme
and anti-interference ability.

[58] proposed the UWHear system. It uses Impul
Radio Ultra-Wideband (IR-UWB) technology to build a
enhanced audio perception system.

The following describes the data structure of UWHea
The X-axis is the fast time, which represents the roun
trip ToF of the pulse so that the fast time can be converte
to the distance bin. The Y-axis is slow time. The da
collected during the response is called a frame. All fram
are sorted chronologically, and placed along the Y-axi
After finding the distance bin corresponding to each soun
source, a slice is taken from the 2D matrix, and the 1
time series is obtained to estimate the sound source. The IR
UWB radar uses ultra-wideband pulse signals for distanc
measurement and recovers the acoustic information of th
target by receiving and analyzing the echo signal. The targ
audio is recovered by sending and receiving ultra-wideban
pulse signals, processing pulse-echo signals, time doma
analysis, inversion algorithms, etc.

The received signal in this article is 𝑦(𝑡), which is mo
eled as a convolution of the transmitted signal and th
channel impulse response plus additive noise, i.e. the sign
𝑦(𝑡) is transmitted through a system (expressed as the syste
function ℎ(𝑡)) plus the noise 𝑛(𝑡)

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡)

=
𝑃∑

𝑝=1)
𝛼𝑝𝑔(𝑡 − 𝑘𝑇𝑠 − 𝑇𝑝 − 𝑇𝐷

𝑝 (𝑡))

× cos(2𝜋𝑓𝑐(𝑡 − 𝑘𝑇𝑠 − 𝑇𝑝 − 𝑇𝐷
𝑝 (𝑡))) + 𝑛(𝑡)

(2

where 𝑥(𝑡) is the input signal. 𝑃 denotes the range
the sum. 𝑎𝑝 is the coefficient. 𝑔(𝑐𝑑𝑜𝑡) is a function. 𝑓

Chen et al.: Preprint submitted to Elsevier Page 8 of 1
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the frequency of the signal. 𝑇𝑠, 𝑇𝑝, and 𝑇𝐷
𝑝 are time

lay parameters in communication systems. The formula
scribes the transformation of a signal during transmission
d takes into account both internal and external influences
the system.
UWHear is capable of sensing audio vibrations on the

ll and operates in some non-line-of-sight (NLOS) con-
ions. The ability to simultaneously recover and separate
unds from multiple sources is achieved. Experiments have
own that UWHear is effective in separating the contents
two speakers that are only 25 cm apart. It achieves a good
lance between signal penetration and ranging resolution.
wever, because its sampling rate is 1.6 kHz, which is less
n the minimum sampling rate of 3 kHz (the sampling
e of landlines) for a sufficient understanding of human
eech, it is impossible to understand the larger corpus by
elligently understanding the numbers read by humans.
X-band UWB[96] is an ultra-wideband wireless commu-

ation technology that uses the frequency range of 8 12
z. The advantages of X-band UWB are higher resolution,
er path loss, better penetration, and smaller antenna size.
] demonstrated the feasibility of remotely sensing sound

d recovering sound signals from vibration sources by
ing UWB radar technology. X-band UWB radar is used
observe multiple separated sound sources in different
ges, and their signals are separated and recovered, and
perspective ability of microwave signals is used for target
nitoring blocked by obstacles. Three unique experimental
ups are used to demonstrate the feasibility of this tech-
ue: a passive object in the proximity of the active source,
separation of multiple sound sources at different ranges
the radar, and the blocking of the sound source by a
lectric medium. However, it has a low audio response and

n only recover audio below 400 Hz, so the recovery of
man voice is not taken into account.
.3. Based on RFID
RFID[98] is a wireless communication technology that

es electromagnetic waves to identify and track tags at-
hed to objects, people, or animals. These tags are called
ID tags[99]. It stores digitized data related to the marked
ject and can be read by RFID readers. [57] demonstrates
possibility of using low-cost and easily overlooked RFID
s to effectively perform through-the-wall eavesdropping.

battery-free method called Tag-Bug is proposed. Tag-Bug
tracts sound features in two ways: (i) vibration effect, in
ich the sound directly causes the label to vibrate; (ii)
flection effect, in which the label does not vibrate, but
rceives the reflected signal of nearby vibrating objects. In
s article, the attack focused on the sound played by the
eakers, not the sound of a real person speaking because
l people are speaking mainly cause air movement, not air
rations caused by sound.
The signal received by the RFID reader can be di-
ed into three parts: leakage signal, multipath signal,

d backscattered signal. Among them, leakage signal[100]

refers to the leakage of a part of the signal from the tran
mitter to the receiver or from the receiver to the transmitt
due to the incomplete isolation of the channel between th
transmitter and the receiver in wireless communication, r
sulting in signal interference and performance degradatio
These leaks to the receiver or transmitter become leake
signals. Multipath signal[101] refers to the phenomenon
reflection, diffraction, scattering, and other phenomena
the signal due to the signal encountering various objec
in the process of propagation, resulting in the formation
several different paths to reach the receiver, and the signals
these different paths are called multipath signals. Backsca
tered signal[102] refers to a technology that uses the energ
of an incident radio frequency signal to transmit informatio
in wireless communication, also known as backscattere
communication. Therefore, the received signal is expresse
as

⎧⎪⎨⎪⎩

𝑆𝐿 = 𝑆𝑇𝑋ℎ𝐿,
𝑆𝐸 = 𝑆𝑇𝑋ℎ𝐸,𝑑 ,
𝑆0 = 𝑆𝑇𝑋ℎ𝑑ℎ𝑑′ , 𝑆1 = 𝑆𝑇𝑋ℎ𝑑ℎ𝑑′ℎ1.

(2

where ℎ1 is the modulation gain of the tag. 𝑆𝑇𝑋 is th
CW signal sent by the TX antenna. 𝑆𝐿 is the leak signa
𝑆𝐸 is the multi-path signal, 𝑆0 or 𝑆0 is the backscattere
signal. ℎ𝑑 is the signal attenuation caused by the uplin
transmission distance. ℎ𝑑′ is the signal attenuation caused b
the downlink transmission distance. And ℎ𝐸,𝑑 is the overa
signal attenuation due to the environment, which is als
related to the distance 𝑑. To amplify the effects of vibration
signals, the authors devised a new signal signature calle
Modulated Signal Differential (MSD) to reconstruct soun
from RF signals. To improve the quality of reconstructe
voices for human speech recognition, the authors applie
Conditional Generative Adversarial Networks (CGANs)
recover the full frequency band from part of the reco
structed voice. The side-channel attacks described in the a
ticle can be launched in three different ways: medium-base
eavesdropping, aerial-based eavesdropping, and reflectio
based eavesdropping. Experiments have shown that Tag-Bu
can successfully capture monotonous sounds when the lou
ness is greater than 60 dB. Tag-Bug can effectively identi
the number of human voices in free-space eavesdroppin
thru-the-brick-wall eavesdropping, and thru-the-insulatin
glass eavesdropping, as well as accurately identify letters
free-space eavesdropping.
2.3.4. Based on mmWave

Millimeter wave[103] is an electromagnetic wave wi
a wavelength between 1 mm and 10 mm and a frequenc
between 30 GHz and 300 GHz. Millimeter waves have
wide range of applications in communications, radar, remo
sensing, and astronomy.

The general principle of millimeter wave for acoust
eavesdropping[104] is to use millimeter wave radar to me
sure the vibration of sounding objects, and then restore th
sound signal through signal processing or deep learnin

Chen et al.: Preprint submitted to Elsevier Page 9 of 1
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ecifically, when sound waves propagate to sound-emitting
jects (such as loudspeakers, glass windows, etc.), they
use them to produce small displacements that affect the
o phase of millimeter-wave radar. Millimeter-wave radar

n capture these phase changes and convert them into
ctrical signals, which are then used to recognize human

eech. A major advantage of this approach is that it can
rk in a variety of complex environments, including in
presence of noise or sound mitigation measures. This

because millimeter waves can accurately capture the air
ctuations generated by sound, and are highly robust to
tors such as noise.
[60] proposed a system-level acoustic eavesdropping
tem - MILLIEAR, which integrates millimeter-wave
CW and generative machine learning networks. It uses

llimeter-wave radar to capture tiny vibrations caused
sound, extracting large amplitude vibrations based on

arse-grained phase estimation of millimeter-wave signals
tween chirps. However, all chirp-room-based methods
ve limitations in terms of low-frequency response and
ccuracy, so the authors used generative machine learning
dels to enhance the millimeter-wave radar signal reflected
m the speaker to reconstruct the original audio. It does
t require physical contact with the victim’s device/sensor,
r does it require the installation of spyware on the vic-
’s device. It uses frequency-modulated continuous wave

MCW) to transmit signals (refer to Equations 14,15) to a
rating speaker. Enhance captured speaker vibrations by

nerating machine-learning models. The model does not
uire prior knowledge of the words in the audio signal, and
eavesdropping vocabulary is not restricted by developing
onditional Generative Adversarial Network (cGAN). It

es virtual sub-chirps to measure phase changes and uses
llimeter-wave radar signals to extract speaker vibrations in
presence of multipath noise. The results and evaluations

ow that the attack is very effective under a range of real-
rld limitations, such as different angles and partitions.
[61] use millimeter-wave radars to eavesdrop on mobile

one voice content. The authors came up with an attack
del called mmSpy. The model can be used to classify

d reconstruct speech (such as words and numbers) within
bile phones through domain adaptation techniques based
synthetic and real radar data. mmSpy has created a
del based on synthetic training data generated using

pular speech datasets at scale. Synthetic training data is
mbined with small-scale training data from real radar to
nerate mmSpy’s audio reconstruction and speech classifi-
tion models. This model is used to classify and reconstruct
eech content. mmSpy proposes a range of techniques, in-
ding statistical noise correction, machine learning-based
deling, and domain adaptation. To account for the dis-
pancies between synthetic and real radar data, mmSpy

es small-scale training data from real radar to domain
apt the model. mmSpy senses the tiny vibrations produced
the handset device that the user is listening to during a

ll by detecting phase changes in the millimeter-wave signal
ected from the phone’s body. mmSpy can eavesdrop on

audio content even if the audio is completely inaudible
humans and nearby microphones. mmSpy demonstrated th
feasibility of eavesdropping on calls using headphones, an
demonstrated its ability to detect tiny vibrations of hea
phones that can’t be heard by microphones co-located wi
radar.

Both articles deal with techniques for eavesdroppin
using millimeter-wave radar. [60] adopted a combinatio
of frequency-modulated continuous-wave (FMCW) ran
ing and conditional generative adversarial networks, whic
can accurately reconstruct audio even in different distance
angles, and through-wall scenarios. [61] achieved eave
dropping on phone calls by detecting the weak vibration
of headphones using millimeter-wave radar signals, an
demonstrated the feasibility of reconstructing audio signa
from radar data.

[43] introduces the voiceprint eavesdropping syste
mmEcho, which uses millimeter-wave radio signals to acc
rately measure the micron-level vibration of objects cause
by sound waves. Compared to previous studies, mmEcho
eavesdropping method is highly accurate and does n
require machine learning and prior knowledge. The mmEch
system consists of three modules: Reverberant Object D
tection (ROD), Vibration Extraction and Audio Reconstru
tion (VA), and Audio Noise Reduction (ANR). Since th
traditional FMCW distance calculation formula13 does n
provide micron-level resolution for vibration measurement
the authors used the intra-chirp method to estimate th
distance between the target object and the radar. The resul
show that mmEcho can accurately reconstruct audio fro
moving sources at various distances, orientations, reflectiv
objects, soundproofing materials, different languages, an
sound levels based on the textual information provided.
2.3.5. Other methods

[105] uses Doppler radar to identify human voices b
capturing micro-Doppler features from laryngeal and or
vibrations. The authors succeeded in using Doppler rad
to capture the echo signal produced when a person emitte
seven notes from Do to Ti and letters from A to Z. Throug
spectrum analysis, the authors successfully classified the
26 letters using a deep convolutional neural network with a
accuracy of 94%. To overcome the problem of insufficie
data volume and improve classification accuracy, the autho
introduced transfer learning and increased the accuracy
97% using the VGG-16 model. However, the frequenc
response of the method proposed in this paper is limited
less than 200 Hz.

[106] mainly discusses a new side-channel attack metho
that obtains the content of a digital screen through li
uid crystal nematic state sensing. The authors designed
portable, low-cost, and energy-efficient 24GHz millimete
wave probe, and proposed a layered module based on en
to-end deep learning for identifying screen content typ
and retrieving sensitive information on digital screens. Th
authors have conducted a large number of experiments
show that the proposed WaveSpy is capable of achievin
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re than 99% inference accuracy within 5 meters through
wall, with a centimeter-level solution for screen content.

periments have shown that WaveSpy can carry out screen
acks in different open environments with good results. The
per ends with experimental results and a summary, which
ows that the proposed WaveSpy system has reliability,
ustness, and efficiency in practice.
[107] mainly introduces the preliminary work of vi-
tion measurement using millimeter-wave radar. In this

per, we propose a Multi-Signal Integration Model (MSC)
t describes the properties of reflected signals in the In-
ase and Quadrature (IQ) domains and uses the intrinsic
nsistency between these signals to accurately recover the
rational signature. In the experiments, the authors evalu-
d the performance based on the amplitude and frequency
or of the vibration signal. The frequency error reflects
correctness of the measured vibration signal, while the

plitude error reflects the accuracy. They discuss the limi-
ions of mmVib and show the implementation details and
aluation results. mmVib enables micron-level vibration
asurements (below 500Hz) in industrial environments.
[108] mainly introduces radio frequency (RF) micro-

ones, a sound recovery technology based on millimeter-
ve radar systems. The authors propose this emerging
und recovery technique by using a millimeter-wave 120GHz
erferometric radar system, which can track micron-scale
placements of vibration sources, such as working speak-
, and other objects vibrated by sound waves, such as
ndow glass, in real-time. By recovering the displacement
ormation from the radar signal, the original audio in-
mation can be strictly correlated and recovered, mak-

it possible to reproduce the sound information. This
hnology uses a novel algorithm based on trigonometric
ction transformation to perform millimeter-wave linear

ase modulation to overcome the phase ambiguity caused
the displacement of the vibrating object by more than

lf a wavelength. The authors used millimeter-wave radar
detect vibrations below 1kHz, and the results showed
t the RF microphone performed well at sensing precise
rations, but the radar sensor needed to be very close to
speaker (≤ 5𝑐𝑚) to eavesdrop.
[109], the method of using non-contact voiceprint recog-

ion technology for speaker verification and the effective-
ss of anti-fraud attacks are discussed. This paper intro-
ces the traditional method of using voiceprint recognition

speaker verification, discusses the feasibility of using
iceprint and language models as biometric features, and
design method of using millimeter-wave radar to perform

eaker verification. Among them, the authors can not only
rify the speaker in a non-contact and unobtrusive way by
ing millimeter-wave radar for speaker verification but also
tter detect various spoofing attacks. The system enables
curate and robust speaker verification in IoT smart home
plications and is highly resistant to fraud attacks. How-
er, the system does not focus on speech reconstruction and
s a frequency response of less than 200Hz.

[110] mainly discusses the principle of using radar se
sors to measure the small vibrations of objects caused b
sound and its application in detecting sound signals. Rad
sensors convert objects into microphones, which detect an
identify sound signals by measuring the tiny vibration
caused by sound pressure waves on the surface of the objec
This method can not only realize the detection of soun
signals but also be applied to remote eavesdropping an
security monitoring. In this paper, the 24GHz FMCW rad
is used to reconstruct the audio, but the experimental eval
ation is insufficient.

In [59], an end-to-end noise-resistant speech sensin
system, WaveEar, is proposed. WaveEar uses a 24GH
mmWave probe and Wave-voice Net deep neural netwo
technology to achieve noise-resistant voice perception. Wav
voice Net can recover noise-free speech from receive
mmWave signals. The system converts the reflected 1-
time-domain signal into a 2-D spectrogram, then uses
neural network based on the residual architecture to lea
and establish the mapping between the millimeter-wav
spectrogram and the speech spectrum, and finally us
the phase reconstruction algorithm to recover the speec
WaveEar can reconstruct high-quality sound from the user
throat using millimeter-wave radar, but it requires the subje
to remain stationary and short (less than 2m) away from th
radar probe.

[111] discusses a new method for measuring the di
placement characteristics of mechanical vibrations usin
frequency-modulated continuous-wave (FMCW) radar sy
tems. The authors used a method based on instantaneou
phase evaluation rather than a spectrum estimator to achiev
high accuracy and accuracy in distance measurement
Compared to previous FMCW radar vibration measureme
methods, this method allows for the measurement of fr
quencies well above the slow repetition rate of the rad
system, similar to continuous wave (CW) radar or six-po
radar systems. The advantage of this method is that multip
targets at different distances can be measured simultaneous
without the need to use ultrafast but mostly noisy and no
linear frequency chirps.

[112]applies a speech enhancement algorithm to im
prove the voice signal captured by custom millimeter-wav
radar. The performance of radar sensors in detecting speec
signals was investigated through experiments, and its appl
cation in speech recognition and speech pathology was di
cussed. The authors successfully extracted the vibration si
nals of human speech organs using different technical mean
such as micropower pulse radar, ultra-wideband radar, an
Doppler radar system, and carried out experimental eva
uation. They experimentally verified the effectiveness
radar sensors in speech detection, including the detectio
of speech signals such as Mandarin and the evaluation
signal quality. Through field experiments and evaluation
the experimental results, the authors discussed the feasibili
and effectiveness of using radar sensors for voice detectio
Experimental results show that the proposed algorithm h
achieved good results in the processing of radar speech, an
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s better performance compared with other algorithms after
alyzing the speech signals in different noise environments.

[113] discusses the technical aspects of multimodal
tomatic speech recognition (ASR) systems in public ap-
cations of voice user interfaces (VUIs). The authors
ed millimeter wave and audio signals to fuse to design a
lti-mode ASR system called Wavoice to achieve accurate

eech recognition in complex environments such as noise
d motion interference. The system combines millimeter
ves and microphones by using machine learning. The in-
nsic correlation between millimeter wave and audio signal
studied through mathematical modeling, and a real-time
d anti-interference method for acoustic activity detection
d user localization is proposed. By optimizing the multi-
dal fusion network based on attention mechanism and

ing cross-modal calibration, the robustness and perception
tance of Wavoice are improved, so that the character
ognition error rate within 7 meters is less than 1% under
favorable conditions. Overall, the technical aspects of this
per mainly involve the design and optimization of an
tomatic speech recognition system based on millimeter
ve and audio signal fusion for application in voice in-
action interfaces in public places. However, the research
the aforementioned papers ([105], [107], [108], [110],

d [113]) lacks comprehensive coverage of the frequency
ponse of the human speech spectrum (300 Hz to 3.4
z) ([114]). Papers [111] and [112] depend on specialized

rdware for line-of-sight audio reconstruction. Papers [59],
5], [106], [109], and [113] utilize machine learning[115]

d necessitate prior knowledge and extensive datasets for
del training. Consequently, none of the aforementioned
dies fulfill the criteria for acoustic eavesdropping in real-
rld scenarios.

Comparison
In the discussion below, we will compare the three differ-

t eavesdropping methods mentioned in Section 3 in detail
better understand their advantages and disadvantages.
Motion sensor-based acoustic eavesdropping can capture

und waves by analyzing the tiny movements of an object’s
rface, which allows it to be monitored without direct
ntact with the sound source, improving the concealment
eavesdropping. However, it may be affected by environ-
ntal factors. Factors such as air movement, movement of
er objects, etc., can interfere with the sensor’s accuracy.
addition, there are high requirements for the sensor’s

curacy and the processing algorithm[116].
Optical sensor-based acoustic eavesdropping uses op-

al devices, such as lasers, to capture tiny vibrations on
surface of an object from a distance, enabling covert
ote eavesdropping. This approach is particularly useful

situations where a safety barrier needs to be crossed or the
get cannot be reached. The disadvantage is that it requires
irect look at the target, and the reflective properties of
target surface can affect the eavesdropping effect. Op-

al eavesdropping devices are often bulky, expensive, and
sceptible to ambient light and weather conditions[117].

RF-based-based acoustic eavesdropping enables eave
dropping on wireless communication devices by capturin
and analyzing sound information in wireless signals. Som
RF-based acoustic eavesdropping methods are not even lim
ited by physical isolation. RF eavesdropping technolog
can cover a wide range and is suitable for a variety
wireless communication protocols and devices. However,
may require sophisticated signal processing and decryptio
techniques to extract sound information from communic
tions. In addition, RF eavesdropping can be hampered by e
cryption technology and anti-eavesdropping measures[118

4. Future Work
In this section, we discuss the shortcomings of curre

research and possible ways to improve them.
Motion sensor-based acoustic eavesdropping system

such as [47] require higher sampling rates to improve th
system’s accuracy. However, since increasing the samplin
frequency may increase the amount of energy consume
by sampling, a trade-off should be made between accurac
and energy efficiency. [50] mentions that motion senso
are only affected by speech signals in certain situations, s
more efficient signal processing algorithms can be studie
to improve the ability of motion sensors to capture small v
brations, thereby improving the accuracy of acoustic eave
dropping through ambient vibrations. [48] studied mult
sensor fusion. It does not specifically look at the impact
TI-ADC signals but only highlights the risks of ubiquitou
IoT devices. In the future, it is possible to study data f
sion algorithms combining different types of sensors, suc
as accelerometers and gyroscopes, to improve the quali
and accuracy of sound reconstruction. Motion sensor-base
acoustic eavesdropping may require the development
efficient noise reduction algorithms to reduce the impa
of ambient noise on sound capture and improve acoust
eavesdropping in noisy environments[119].

Acoustic eavesdropping based on optical sensors, suc
as [6], demonstrates the possibility of using optical senso
for eavesdropping, but further research is needed to improv
the performance of eavesdropping systems. In [54], whi
the authors show how to extract tiny vibrations from th
surface of a body from high-speed video to partially resto
the sound-producing sound, further research may still b
needed to improve the quality and stability of the reco
ered sound. In addition, in the LidarPhone study, while th
researchers successfully implemented an attack using lid
sensors for eavesdropping, more research is likely neede
to improve classification accuracy and applicability to di
ferent environmental conditions. Therefore, future researc
directions may include improving technology to improve th
accuracy of sound reconstruction, improving the stability
optical systems[120] to enable them to work stably und
different environmental conditions, studying how to count
these side-channel attacks, researching and developing o
tical eavesdropping technologies that can work effective
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longer distances, and exploring new defense mechanisms
d privacy protection measures[121].

RF-based acoustic eavesdropping can remotely sense
d recover sound[97], but further research is still needed on
w to deal with complex sound environments and expand
monitoring range in practical applications. It can achieve

ent lip recognition [We can], but more research is needed
improve the accuracy of oral narration and the detec-
n of multi-person conversations. It can achieve silent lip
ognition[56], but more research is needed to improve the

curacy of oral narration and the detection of multi-person
nversations. In addition, it can recover and separate sounds
m multiple sources at the same time[58], but further
rification is required for sensitivity and accuracy for real-
e applications. Therefore, future research directions may
lude but are not limited to, improving sound recovery

d separation algorithms to improve accuracy and real-
e, developing more covert RF eavesdropping techniques
reduce the risk of detection[122], and researching new
signal processing technologies to improve the ability of

nals to penetrate obstacles such as walls and the resolution
sound signals.

Conclusion
This work provides a systematic investigation of acoustic
esdropping methods. We comprehensively introduce and
ssify the various current acoustic eavesdropping methods,
mely motion sensor-based acoustic eavesdropping, optical
sor-based acoustic eavesdropping, and RF-based acoustic
esdropping. We describe the representative methods in

tail and give the relevant formulas. We then analyze the
vantages and disadvantages of these methods and dis-
ss several future research directions for the research com-
nity to explore. This work can help researchers under-
nd the classification and characteristics of various acous-
eavesdropping methods, and help researchers choose

propriate acoustic eavesdropping methods for research or
plication. In addition, this paper also provides reference
d enlightenment for further exploration in the field of
oustic eavesdropping.
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